How is the Hierarchy Managed?

- **Registers ↔ Cache**
 - by compiler (programmer?)
- **Cache ↔ Memory**
 - by the hardware
- **Memory ↔ Disks**
 - by the hardware and operating system (virtual memory)
 - by the programmer (files)
Memory Hierarchy Technology

• **Random Access:**
 – “Random” is good: access time is the same for all locations
 – **DRAM:** Dynamic Random Access Memory
 • High density, low power, cheap, slow
 • Dynamic: need to be “refreshed” regularly
 – **SRAM:** Static Random Access Memory
 • Low density, high power, expensive, fast
 • Static: content will last “forever” (until lose power)

• **“Non-so-random” Access Technology:**
 – Access time varies from location to location and from time to time
 – Examples: Disk, CDROM, DRAM page-mode access

• **Sequential Access Technology:** access time linear in location (e.g., Tape)
Main Memory Background

• **Performance of Main Memory:**
 – **Latency:** Cache Miss Penalty
 • *Access Time*: time between request and word arrives
 • *Cycle Time*: time between requests
 – **Bandwidth:** I/O & Large Block Miss Penalty (L2)

• **Main Memory is DRAM:** Dynamic Random Access Memory
 – Dynamic, needs to be refreshed periodically (8 ms)
 – Addresses divided into 2 halves (Memory as a 2D matrix):
 • *RAS* or *Row Access Strobe*
 • *CAS* or *Column Access Strobe*

• **Cache uses SRAM:** Static Random Access Memory
 – No refresh (6 transistors/bit vs. 1 transistor)
 • *Size*: DRAM/SRAM - 4-8
 • *Cost/Cycle time*: SRAM/DRAM - 8-16
Random Access Memory (RAM) Technology

• Why do computer designers need to know about RAM technology?
 – Processor performance is usually limited by memory bandwidth
 – As IC densities increase, lots of memory will fit on processor chip
 • Tailor on-chip memory to specific needs
 - Instruction cache
 - Data cache
 - Write buffer
• What makes RAM different from a bunch of flip-flops?
 – Density: RAM is much denser
Static RAM Cell

6-Transistor SRAM Cell

- **Write:**
 1. Drive bit lines (bit=1, bit=0)
 2. Select row
- **Read:**
 1. Precharge bit and bit to Vdd or Vdd/2 => make sure equal!
 2. Select row
 3. Cell pulls one line low
 4. Sense amplifier on column detects difference between bit and bit
1-Transistor Memory Cell (DRAM)

• **Write:**
 - 1. Drive bit line
 - 2. Select row

• **Read:**
 - 1. Precharge bit line to Vdd/2
 - 2. Select row
 - 3. Cell and bit line share charges
 - Very small voltage changes on the bit line
 - 4. Sense (fancy sense amp)
 - Can detect changes of $\sim 10^6$ electrons
 - 5. Write: restore the value

• **Refresh**
 - 1. Just do a dummy read to every cell.
Classical DRAM Organization (square)

- Row and Column Address together:
 - Select 1 bit a time

Each intersection represents a 1-Tr. DRAM Cell

bit (data) lines

word (row) select

row decoder

row address

Column Selector & I/O Circuits

Column Address

data

RAM Cell Array
Chapter 7.1 - Memory

DRAM Performance

• A 60 ns (t_{RAC}) DRAM can
 – perform a row access only every 110 ns (t_{RC})
 – perform column access (t_{CAC}) in 15 ns, but time between column accesses is at least 35 ns (t_{PC}).
 • In practice, external address delays and turning around buses make it 40 to 50 ns.
• These times do not include the time to drive the addresses off the microprocessor, nor the memory controller overhead.
 – Drive parallel DRAMs, external memory controller, bus to turn around, SIMM module, pins…
 – 180 ns to 250 ns latency from processor to memory is good for a “60 ns” (t_{RAC}) DRAM
Something new: Structure of Tunneling Magnetic Junction

- Tunneling Magnetic Junction RAM (TMJ-RAM)
 - Speed of SRAM, density of DRAM, non-volatile (no refresh)
 - “Spintronics”: combination quantum spin and electronics
 - Same technology used in high-density disk-drives
Main Memory Performance

a. One-word-wide memory organization
 - **Simple:**
 - CPU, Cache, Bus, Memory same width (32 bits)

b. Wide memory organization
 - **Wide:**
 - CPU/Mux 1 word; Mux/Cache, Bus, Memory N words (Alpha: 64 bits & 256 bits)

c. Interleaved memory organization
 - **Interleaved:**
 - CPU, Cache, Bus 1 word; Memory N Modules (4 Modules); example is word interleaved
Main Memory Performance

- **DRAM (Read/Write) Cycle Time** >> **DRAM (Read/Write) Access Time**
 - 2:1; why?

- **DRAM (Read/Write) Cycle Time**:
 - How frequent can you initiate an access?
 - Analogy: A little kid can only ask his father for money on Saturday

- **DRAM (Read/Write) Access Time**:
 - How quickly will you get what you want once you initiate an access?
 - Analogy: As soon as he asks, his father will give him the money

- **DRAM Bandwidth Limitation analogy**:
 - What happens if he runs out of money on Wednesday?
Increasing Bandwidth – Interleaving

Access Pattern without Interleaving:

- Start Access for D1
- Start Access for D2
- D1 available

Access Pattern with 4-way Interleaving:

- Access Bank 0
- Access Bank 1
- Access Bank 2
- Access Bank 3
- We can Access Bank 0 again
Main Memory Performance

• **Timing model**
 – 1 to send address,
 – 4 for access time, 10 cycle time, 1 to send data
 – Cache Block is 4 words

 Simple M.P. \[= 4 \times (1 + 10 + 1) = 48\]
 Wide M.P. \[= 1 + 10 + 1 = 12\]
 Interleaved M.P. \[= 1 + 10 + 1 + 3 = 15\]