
Appears in the Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), 2003

Power Efficient Comparators for Long Arguments in
Superscalar Processors

Dmitry Ponomarev Gurhan Kucuk Oguz Ergin Kanad Ghose

Department of Computer Science
State University of New York, Binghamton, NY 13902–6000
e–mail:{dima, gurhan, oguz, ghose}@cs.binghamton.edu

http://www.cs.binghamton.edu/~lowpower

ABSTRACT

Traditional pulldown comparators that are used to implement
associative addressing logic in superscalar microprocessors dissipate
energy on a mismatch in any bit position in the comparands. As
mismatches occur much more frequently than matches in many
situations, such circuits are extremely energy–inefficient. In
recognition of this inefficiency, a series of dissipate–on–match
comparator designs have been proposed to address the power
considerations. These designs, however, are limited to at most 8–bit
long arguments.

In this paper, we examine the designs of energy–efficient comparators
capable of comparing arguments as long as 32 bits in size. Such long
comparands are routinely used in the load–store queues, caches,
BTBs and TLBs. We use the actual layout data and the realistic bit
patterns of the comparands (obtained from the simulated execution of
SPEC 2000 benchmarks) to show the energy impact from the use of
the new comparators. In general, a non–trivial combination of
traditional and dissipate–on–match 8–bit comparator blocks
represents the most energy–efficient and fastest solution. As an
example of this general approach, we show how fast and
energy–efficient comparators can be designed for comparing
addresses within the load–store queue of a superscalar processor.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – layout, simulation

General Terms
Design, Measurement

Keywords
Low–power comparators, superscalar datapath

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea
Copyright 2003 ACM 1–58113–682–X/03/0008...$5.00.

1. INTRODUCTION
Today’s superscalar microprocessors make extensive use of
associative matching logic and comparators to support out–of–order
execution and virtual memory mechanisms. Comparators, either
explicit or embedded into content–addressable logic, are in a
pervasive use within the issue queues, load–store queues, translation
lookaside buffers (TLBs), branch target buffers (BTBs), caches,
reorder buffers and CAM–based register alias tables.

Specifically, the long comparators (comparing upwards of 8 bits) are
in wide use in today’s high–performance processor designs. They are
used, either by themselves or embedded into a content–addressable
logic, in at least the following key datapath components:

1) Within the translation lookaside buffer (TLB) to quickly translate
virtual page numbers to physical page numbers in parallel with the
access of a physical address–tagged cache.

2) Within the load–store queues (LSQ) to match the addresses of the
pending load instructions against the addresses of previously
dispatched store instructions to enable the loads to bypass previously
dispatches stores, if the address of the load does not match the
addresses of all such stores.

3) Within banks of instruction and data caches for some embedded
CPUs like the Strong ARM SA 1100 (which uses a fully–associative
256–entry cache bank).

4) Within the branch target buffer (BTB) to obtain the target of a taken
branch and continue fetching the instructions along the predicted path
without interruption.

The traditional equality comparator circuit used for implementing
associative logic in modern datapaths (or, for that matter, any digital
comparison) is shown in Figure 1 [4]. These so called pull–down
comparators pull down a precharged output, out, on a mismatch in
any bit position when the evaluation signal (eval) goes high. The
precharged output remains high on a match. Energy is thus dissipated
on a mismatch in the compared arguments (comparands). No
dynamic energy dissipation occurs on a full match; the only possible
energy dissipation in this case is attributed to leakage.

Content–addressable memories (CAMs) also employ traditional
dissipate–on–mismatch comparators that are embedded into the
bitcells. Recent work have addressed the problem of minimizing
energy dissipation in CAMs [6, 7]. In [7], the CAM words are
effectively sub–banked and searches proceed on a subbank by
subbank order. If a word–slice within a subbank does not match the
corresponding bits in the search key, comparisons in slices of the same
word in the following subbanks are disabled, thereby saving energy
in extraneous comparisons. The approach of [6] extends this
technique further. The common feature in both approaches is still the
reliance on dissipate–on–mismatch comparators.

Vdd

pre

OUT

A0

B0

A0

B0

eval

one per bit position

A7

B7

A7

B7

Figure 1. Traditional pull–down comparator

...

In many situations, where the circuit of Figure 1 is used in modern
datapath (in the applications alluded to earlier) mismatches occur with
a much higher frequency compared to full matches. Consequently,
significant energy savings can be realized if comparators and
associative logic can be designed to dissipate energy only on a full
match and little or no energy on a mismatch. In recognition of this
inefficiency, first noticed in [2], a series of such dissipate–on–match
comparator (DMC) designs have been recently introduced [1], [5].

A limitation of the traditional comparator shown in Figures 1 is that
in practice, the worst–case delays go up with the number of bits. This
is because of the increase in the switched capacitance of the
precharged node with the number of bits compared. Wider pulldown
paths are needed to counter this in an effort to maintain the discharge
time constant. Likewise, a wider p–device is also needed to maintain
the precharging time constant. In reality, there are layout area
considerations and other practical limitations (such as leakage energy
considerations) that constrain the width of the p– and n–devices. The
inevitable impact of these constraints is an increase in the overall
worst–case delay of the traditional comparator with the number of bits
compared.

In many applications within a modern superscalar processor (as well
as in some scalar datapaths) much longer arguments have to be
compared. Examples of such applications include the comparison of
full effective addresses within the load–store queues and
fully–associative TLBs and the comparison of long parts of a full
address within caches and set–associative TLBs and BTBs.
Somewhat different approach is needed to design these long
comparators in an energy–efficient manner with acceptable delays. In
some designs, compromises may have been made to avoid long
comparison delays. For example, a few address bits may be compared
when a LOAD’s effective address is compared against the effective
address of all pending STOREs ahead of the LOAD in the load–store
queue. If any match occurs, a dependency is assumed, even though
there may not be any had the full addresses been compared! When
such a match is detected in comparing only a few bits of the addresses,
the LOAD is not allowed to bypass the pending STOREs and overall
performance may be limited in the case when there is no match had
all of the address bits been compared.

The design of fast, energy efficient comparators for comparing long
arguments in applications such as the above is exactly the subject of
this paper.

The rest of the paper is organized as follows. In Section 2, we discuss
a non–traditional comparator design that is used as a component in
some long comparator circuits. Section 3 describes several design
alternatives for the long comparators. These designs are based on the
use of several traditional comparators, several non–traditional

comparator designs (as introduced in [1] or [5]) or a combination of
the traditional and non–traditional designs. The choice of a specific
design for a long comparator is actually dependent on the distribution
of the bit patterns that are compared, which are usually obtained
through microarchitectural–level simulations. Our simulation
methodology is presented in Section 4. In Section 5, to illustrate how
a specific long comparator design has to be chosen, we evaluate the
usage of long comparators for comparing the addresses of the load
and store instruction in the load–store queue. Our conclusions are
presented in Section 6.

2. NON–TRADITIONAL COMPARATORS
One of the artifacts of a superscalar processor, where the mismatches
in the comparands are much more frequent than the full matches is the
issue queue [1,5]. The issue queue thus demands the use of
non–traditional fast comparators that dissipate energy only (or
predominantly) on a full match and little or no energy on a partial
match [1, 2, 5]. Such designs are significantly more energy–efficient
than the traditional designs. In the case of the issue queue, only a few
bits – no more than 8 – need to be compared.

P

B5A5 B4A4

B3A3 B2A2

B1A1 B0A0

dis

Vdd

pre

out

Vdd

Q2

Q3

Q4

Q5

Q0

Q9

dis

dis

B7A7 B6A6

dis

Q1

Q6

eval & comp

A0 B0A1 B1

A2 B2A3 B3

B4A4B5A5

A6 B6B7A7

Q7

Q8

Figure 2. A 8–bit Dissipate–on–Match Comparator

A non–traditional comparator design, as introduced in [1], which is
superior to the traditional design, both in terms of energy and delay,
is shown in Figure 2. This circuit compares two 8–bit comparands,
A7A6...A0 and B7B6...B0. The series pulldown structure consisting
of the devices Q1, Q2, Q3 and Q4 conducts when all 8 bits of the
comparands are equal. The output of this comparator, precharged to
Vdd by Q0 is discharged when all bits of the comparands are equal and
when the evaluate device, Q5, is on. The n–transistors Q6, Q7, Q8
and Q9 discharge any accumulated charges from the gates of Q1, Q2,
Q3 and Q4 respectively during the precharge phase and prevent the
series structure from discharging the output due to the presence of
accumulated charges at the gates of the series device from past

TRAD out

TRAD
out

TRAD out

DMC out
eval TRAD

final
output

��������	
	��� ��������	���������		��	���

final
output

Each TRAD compares 8 bits

(a) 32–bit traditional comparator

DMC out

TRAD

TRAD

Each DMC and TRAD compares 8 bits

(c) 32–bit energy–efficient comparator: variation 1

(e) 32–bit energy–efficient comparator: variation 3

DMC
out

TRAD

TRAD

final
output

Each DMC compares 8 bits

eval

eval

(d) 32–bit energy–efficient comparator: variation 2

Figure 3. Some variations of energy–efficient comparators for comparing long arguments

eval

eval

eval

eval

eval

eval

eval

eval

TRAD

eval

out

DMC
out

DMC out

DMC out

Each DMC compares 8 bits

(b) 32–bit dissipate–on–match comparator

eval

eval

eval
DMC

eval

out

TRAD

eval

final
output

final
output

TRAD

eval

out

out

out

out

out

out

matches, possibly partial. The data inputs to the comparator of Figure
2 (bits A0 through A7, B0 through B7 and their complements) are
driven after buffering at the beginning of a clock cycle. Because of
this and the sizing of the transistors within the P–blocks, circuit
malfunctions due to charge sharing is avoided [1]. Since the outputs
of all enabled comparators are latched at the end of every cycle, keeper
devices are not needed within the comparator.

In [1], the circuit of Figure 2 is compared to the traditional comparator
both in terms of both energy and delay. Significant energy savings
result in situations where mismatches dominate; at the same time, the
dissipate–on–match comparator design does not effect the critical
path. In fact, the circuit of Figure 2 is slightly faster than the traditional
comparator. As measured from SPICE simulations of our 0.18
micron TSMC layouts, the worst–case delay of the 8–bit comparator
of Figure 2 is 108 ps in a full match case. This is actually faster than
the response time of the traditional pull–down comparator of Figure
1, implemented in the same process, which has a delay of about 120
ps [1].

Like the traditional design of Figure 1, the energy–efficient
comparator shown in Figure 2 is also limited to comparing only a few
bits – up to 8 bits in practice. This restriction comes from the practical
limit on the number of devices in a pass transistor logic (such as the
P–structure of Figure 2) and from a limit on the number of n–devices
that can be connected in series structure. These limitations can be
partly overcome by using a Domino–style design (as shown in [1] and
[5]), but practical limits are still present. The design of Figure 2 is thus

applicable to scenarios where only a small number of bits are
compared, as in the instruction issue queue and
associatively–addressed register alias tables (RATs).

3. LONG COMPARATOR DESIGNS
We now discuss several schemes for comparing longer arguments
(upwards of 8 bits) in modern datapaths in an energy–efficient
manner. Figure 3 shows the various possibilities for comparing
32–bit arguments. Some of these designs produce a high output on
a full match, others produce a low output; the surrounding logic has
to be designed accordingly.

The most obvious way to design a 32–bit comparator is to simply
extend the circuit of Figure 1 to 32 bits. This, however, results in a
very significant increase of the response time and power dissipation
of the circuit, as discussed later. A better approach is to NAND the
outputs of the four traditional (TRAD) 8–bit comparators from
Figure 1, as shown in Figure 3(a). The comparator of Figure 3(a)
outputs a logical “0” on a full match. The output can be inverted to
generate a logical ”1” on a full match, but this increases the delay of
circuit. Figure 3(b) shows a way of using a number of
dissipate–on–match comparators for comparing longer arguments.
Here, four 8–bit dissipate–on–match comparators from Figure 2
(DMCs) are used to compare four consecutive 8–bit segments of
32–bit comparands. The outputs of the DMCs are NOR–ed to
indicate a full match. In contrast to the design of Figure 3(a), this

comparator outputs a high voltage level in the event of a full match.
The comparator of Figure 3(b) is energy–efficient as long as the 8–bit
segments are random, since mismatches dominate in all four blocks.
However, it may not be energy–efficient in the case when some of the
8–bit blocks match often, as some of the DMCs will frequently detect
a match and dissipate energy even when the complete arguments do
not match.

Figure 3(c) depicts a possible solution for comparing long arguments
in an energy–efficient manner in such cases. This design combines
the dissipate–on–match comparators with traditional pull–down
comparators. Here, one DMC and three TRAD comparators are used
to detect a mismatch. As in the case of Figure 3(a), the NAND gate
provides the required logic for producing an output of zero only on
a full match. The delay of the inverter at the output of the DMC block
is partially absorbed by the longer delay of the TRAD block, thus
causing no significant increase in the overall response time.
Energy–efficiency is achieved by driving bits that are more likely to
match into the TRAD comparators, while bits that are least likely to
match are handled by the DMC comparator. The mix of the number
of DMCs and TRADs used can be changed as long as this basic
principle is observed. In Section 5, we study the bit matching patterns
of the comparands within the load–store queue and identify the most
energy–efficient comparator design exploiting the comparand
statistics.

The energy dissipation of the comparator of Figure 3(c) can be further
reduced by using the conditional evaluations within some of the 8–bit
blocks. In Figure 3(d), unless the first DMC produces a match, the
other comparators are not evaluated. Energy savings occur in this case
as the three bottom TRADs are not evaluated unless the DMC detects
a full match, irrespective of the inputs to the TRADs. More explicitly,
unless the top DMC detects a match, the (possibly partial) matches
that the three bottom TRADs would otherwise detect do not cause any
dissipation. The price paid, compared to the designs of Figure 3(b)
or Figure 3(c) is a longer overall delay, since the evaluation delays of
the top DMC, the inverter at the output of the DMC and the three
bottom TRADs are all cascaded. In fact, according to the data
obtained from our layouts, this increase in the delay is very
significant, up to 100%, and we therefore did not consider this design
despite its obvious advantages in terms of energy efficiency.

Figure 3(e) shows yet another way of comparing longer arguments in
an energy–efficient fashion. Here a single DMC controls the
evaluation of a single TRAD comparator that follows it. The delay of
the NAND gate is eliminated, but the TRAD comparator adds a
significant delay in the worst case. The overall delay is specific to the
technology and the number of bits compared by the DMC and the
TRAD. In our implementation, the delay of the circuit of Figure 3(e)
is comparable to the delay of the circuit of Figure 3(d), again making
it an unattractive design choice in high–speed pipelines. The
comparator of Figure 3(e) produces the output of one on a full match,
just like the traditional comparator of Figure 1 does.

The comparator designs shown in Figure 3 are examples of many
others that are possible along similar lines. The main point we want
to make here is that both the traditional comparator and the
non–traditional (i.e., dissipate–on–match) comparators can be useful
in designing fast, energy–efficient comparators for comparing long
arguments. The exact combinations of these components or
combinations using just one of these types are a function of the
distribution of the bit patterns that are compared. The various design
choices also trade off energy savings against delays. As an example
of the application of fast, energy–efficient comparators in a modern
out–of–order execution processor, we look at their use in detecting
effective address matches in the course of a load bypassing
earlier–issued stores in a load–store queue.

In the next Section, we describe our simulation methodology
followed by the detailed evaluation of energy savings achievable
within the long comparators used in the load–store queue.

4. EVALUATION METHODOLOGY
The Simplescalar simulator [3] was significantly modified to
implement true hardware level, cycle–by–cycle simulation models for
such datapath components as the ROB (integrating a physical register
file), the issue queue, the load–store queue, the register alias table and
the register file. The configuration of a simulated processor is shown
in Table 1. The goal of the microarchitectural–level simulation was
to capture the distribution of bit patterns that are compared in the
course of load bypassing.

Table 1. Architectural configuration of simulated processors

Machine
width

4–wide fetch, 4–wide issue, 4–wide commit

Window size 32 entry issue queue, 96 entry ROB, 32 entry load–
store queue

Function
Units and
Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2 Load/
Store (2/1), 4 FP Add (2), 1FP Mult (4/1) / Div (12/12) /
Sqrt (24/24)

L1 I–cache 32 KB, 2–way set–associative, 32 byte line,
2 cycles hit time

L1 D–cache 32 KB, 4–way set–associative, 32 byte line,
2 cycles hit time

L2 Cache
combined

512 KB, 4–way set–associative, 128 byte line,
8 cycles hit time

BTB 1024 entry, 4–way set–associative

Branch
Predictor

Combined with 1K entry Gshare, 10 bit global history,
4K entry bimodal, 1K entry selector

Memory 128bit wide, 100 cycles first chunk, 2 cycles interchunk

TLB 64 entry (I), 128 entry (D), fully associative,
30 cycles miss latency

We simulated the execution of 10 integer (bzip2, gap, gcc, gzip, mcf,
parser, perlbmk, twolf, vortex and vpr) and 8 floating point (applu,
apsi, art, equake, mesa, mgrid, swim and wupwise) benchmarks from
SPEC 2000 suite. Benchmarks were compiled using the Simplescalar
GCC compiler that generates code in the portable ISA (PISA) format.
Reference inputs were used for all the simulated benchmarks. The
results from the simulation of the first 1 billion instructions were
discarded and the results from the execution of the following 100
million instructions were used for all benchmarks.

For estimating the energy/power, the event counts gleaned from the
simulator were used, along with the energy dissipations, as measured
from the actual VLSI layouts using SPICE. CMOS layouts for the
comparators in a 0.18 micron 6–metal layer CMOS process (TSMC)
were used to get an accurate idea of the energy dissipations for each
type of transition. A Vdd of 1.8 volts was used for all the
measurements.

5. RESULTS
We now assess the usage of the long comparators in the load–store
queue. The load–store queue (LSQ), which is used in modern
superscalar processors to disambiguate the memory references, is an
extremely comparator–rich structure. As the load and store
instructions are dispatched, the entries are established in the LSQ in

Í
Í
Í ÍÍ ÍÍ Í

ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ
ÍÍ0

10

20

30

40

50

60

70

0 1 2 3 4

Figure 4. Percentage of partial and full matches in the 8–bit
groups of the long comparators used within the load/store
queue. Each set of bars represents the percentage of cases
when a given number of bit pairs (implemented as P–blocks
in Figure 2) match within each of the four 8–bit groups. Re-
sults are shown for the averages of all simulated SPEC 2000
benchmarks.

group of least significant 8 bits

group of bits 8–15

group of bits 16–23

group of the most significant 8 bitsÍ
Í

program order. To implement the load bypassing, the addresses of the
load instructions are compared against the addresses of all previously
dispatched store instructions and if no match is detected the load
instruction is allowed to initiate its memory access ahead of the
preceding stores. Such load bypassing reduces the effective memory
latency. In case the address of one (or more) of the store instructions
matches the address of the load, the value to be written to the memory
by the most recent such store is forwarded to the load. Such local
forwarding avoids the need to perform expensive memory accesses
for some load instructions. To implement this mechanism, each LSQ
entry is extended with a 32–bit wide address field and the long 32–bit
comparators are used to perform the associative address matching.

Í
Í
Í ÍÍ ÍÍÍ

Í
Í
Í
Í
Í
Í
Í0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8

Figure 5. Distribution of comparison cases based on the num-
ber of matching bits. Each set of bars represents the percent-
age of cases when the number of matching bits is equal to the
bar id. Results are shown for each of the four 8–bit groups
independently. Results are shown for the averages of all simu-
lated SPEC 2000 benchmarks.

group of least significant 8 bits

group of bits 8–15

group of bits 16–23

group of most significant 8 bitsÍ

The most obvious solution – the extended version of Figure 1, results
in an evaluation delay of 464 ps, which is unacceptable for high
frequency pipelines. The circuits of Figure 3(d) and 3(e) suffer from
the same limitation – as discussed in Section 3. On the other hand, the
first three designs shown in Figure 3 have acceptable delays (about
270 ps each) and we now attempt to identify the most energy–efficient
choice among these three designs for the use in the LSQ. To
understand the prevalent bit patterns of the comparands used in this
case, we divided the 32–bit addresses into four groups of 8 bits each.

We then collected the statistics about the matching patterns for each
of the four groups independently. The results, averaged over all
executed benchmarks, are shown in Figures 4 and 5. Figure 4 shows
the percentages that are relevant for the DMC comparator and Figure
5 shows the percentages that are relevant for the traditional
comparator.
Specifically, Figure 4 shows the percentage of cases when a given
number of bit pairs (implemented as the P–blocks in Figure 2) match
within each of the four 8–bit groups. It is interesting to observe from
Figure 4 that the 8–bit groups exhibit quite disparate matching
patterns depending on the significance of the bit positions
constituting a group. The three most significant 8–bit groups match
considerably more often than they mismatch: the match in the most
significant 8 bits was recorded in more than 70% of all comparison
cases, whereas the match in the next significant 8 bits occurs in 68%
of the cases and the match in the group consisting of bits 8 to 15 occurs
in about 60% of the cases. The match percentage is high because the
higher–order bits specify the page number, which is typically
identical for most of the neighboring load and store instructions,
namely the ones that reside in the LSQ and whose addresses are being
compared. Finally, a match in the least significant group occurs in
only about 21% of the cases. These percentages have a direct
implication on the choice of the most energy–efficient 32–bit
comparators that can be used for the LSQ.

Table 2. Energy dissipations of the 8–bit DMC comparators used
within 32–bit comparators.

Number of matching
2–bit groups in the

comparands

Energy of the 8–bit
DMC used to build a
32–bit comparator

2–bit groups in the
comparands

DMC used to build a
32–bit comparator

(fJ)

0 5.78

1 122.3

2 238.9

3 357.5

4 635.8

To estimate the energy impact, we used the layouts of several
comparator variations presented in Figure 3. Treating the four blocks
(DMC or TRAD) shown in Figures 3(a) and 3(b) as independent 8–bit
comparators, we estimated the total power of the 32–bit comparator
by combining the dissipations within the four blocks and the NOR (or
NAND) gate driven by these blocks. We computed the energy
dissipated within the 8–bit DMC block used to implement a 32–bit
comparator of Figure 3(b) in the following manner. We assumed that
the most significant 24 bits of the comparands mismatched in all bit
positions, effectively resulting in no energy dissipation within the
three bottom comparators of Figure 3(b). The entire dissipation of the
circuit is then attributed to the dissipation of the top DMC comparator
and the NAND gate. We then varied the bit combinations within 8
least significant bits of the comparands to obtain the dissipation of the
circuit in various cases, depending on the number of 2–bit groups that
match. Result are summarized in Table 2. Table 2 shows the various
dissipations within the 8–bit DMC block if it used as a building block
for a 32–bit comparator. The energy numbers are shown depending
on the number of bit pairs (implemented by the P–blocks in Figure 2)
that matched in the course of comparison. For each such matching
pair, the charge has to be removed at the end of the cycle from the gate
of the corresponding n–device (see Figure 2) to avoid false match in
the next cycle. Results are applicable to all four DMC blocks used to

implement the circuit of Figure 3(b) – we actually verified this fact by
simulations. Combined with the results of Figure 4, the energy
numbers of Table 2 were then used to compute the energy dissipation
within each 8–bit DMC block, as well as the dissipations within the
entire 32–bit comparator. The results presented in Table 2 were
obtained through SPICE simulations of the actual comparator
layouts.

Table 3. Energy dissipations of the 8–bit traditional comparators
used within 32–bit comparators

Number of matching
bits in the

Energy of the
traditional bits in the

comparands
traditional

comparator (fJ)

0 979.2

1 934.7

2 885.5

3 839.5

4 796.4

5 748.8

6 709.3

7 660.4

8 13.9

In a similar fashion, we estimated the power dissipation of the
comparator shown in Figure 3(a). We assumed the full match in the
most significant 24 bits (again, resulting in no dissipation within the
three bottom TRAD blocks of Figure 3(a), and then estimated the
power dissipated within the top TRAD block for various bit matching
patterns within the least significant 8–bits. Results, similar to those
presented in Table 2, are shown in Table 3. Combined with the
percentages of Figure 5, results of Table 3 allow us to compute the
power dissipation within the individual 8–bit TRAD blocks as well
as the total power dissipation of the circuit of Figure 3(a). In a similar
manner, we can also compute the dissipations of the comparator of
Figure 3(c) and any other design that uses the combination of TRAD
and DMC comparators. Notice that in the results presented in Table
3, the dissipation of the 8–bit TRAD comparator depends on the
number of matching bits. As the number of matching bits increases,
the energy dissipation decreases, because the drain nodes of the
evaluate transistors corresponding to the matching bits are not
precharged. (During the precharge phase, if the new inputs arriving
in this cycle match, there is no direct path from the Vdd to the drain
of the corresponding evaluate transistor).

For the group of the least significant 8 bits of the effective addresses
that are compared for load bypassing, the DMC comparator of Figure
2 dissipates 43% less energy than the traditional comparator used for
the same bits (on the average across all simulated benchmarks). This
is because the percentage of matches in this group is fairly low. The
situation is different for the other three groups – the traditional
comparator is a more energy efficient solution there because of the
high percentage of matches. On the average across all benchmarks,
the traditional comparator is 78% more energy efficient than the DMC
comparator for the second least significant group, 111% for the third
least significant group and 142% for the most significant group.
Overall, the design of Figure 3(a) is 30% more energy efficient (on the

average across all simulated benchmarks) than the design of Figure
3(b). The design shown in Figure 3(c) is the most energy efficient
solution for the 32–bit comparator used in the LSQ, because it takes
into account the properties of the comparands within the individual
8–bit groups. Comparing the total energy dissipations within the
32–bit comparators, the design of Figure 3(c) is 19% more energy
efficient than the design of Figure 3(a), if the comparators are used
within the load–store queue.

6. CONCLUDING REMARKS
It is well recognized that traditional dissipate–on–mismatch
comparator designs are energy inefficient when the majority of
comparison cases result in full matches in the comparands. To address
this deficiency, a number of dissipate–on–match comparators have
been introduced, but those designs were limited to comparing at most
8–bit wide arguments.

In this paper we proposed a series of energy efficient long comparator
designs for superscalar microprocessors. Our designs combine the use
of 8–bit blocks built using traditional comparators with 8–bit blocks
built using dissipate–on–match comparators. We then evaluated the
use of these circuits within the address comparison logic of the
load–store queues. We found that for the same delay, the hybrid
design consisting of one dissipate–on–match and three traditional
8–bit comparators is the most energy efficient choice for the use
within the load–store queue, resulting in 19% energy reduction
compared to the use of four traditional 8–bit blocks. The results
presented in this paper can be easily extended to the TLBs,
highly–associative caches and the BTBs.

7. ACKNOWLEDGMENTS
This work was supported in part by DARPA through contract number
FC 306020020525 under the PAC–C program, the NSF through
award no. MIP 9504767 & EIA 9911099, and by IEEC at
SUNY–Binghamton.

8. REFERENCES
[1] Ergin, O., Ghose, K., Kucuk, G., Ponomarev, D., “A
Circuit–Level Implementation of Fast, Energy–Efficient CMOS
Comparators for High–Performance Microprocessors”, in Proc. of
ICCD, 2002, pp.118–121.

[2] Brooks, D.M., Bose, P., Schuster, S.E. et al, “Power–Aware
Microarchitecture: Design and Modeling Challenges for
Next–Generation Microprocessors”, IEEE Micro Magazine, 20(6),
Nov./Dec. 2000, pp. 26–43.

[3] Burger, D., and Austin, T. M., “The SimpleScalar tool set: Version
2.0”, Tech. Report, Dept. of CS, Univ. of Wisconsin–Madison, June
1997 and documentation for all Simplescalar releases.

[4] “Design of High–Performance Microprocessor Circuits”, edited
by A. Chandrakasan et.al, IEEE Press, 2001.

[5] Kucuk, G., Ghose, K., Ponomarev, D. and Kogge, P.,
“Energy–Efficient Instruction Dispatch Buffer Design for
Superscalar Processors,” in Proc. ISLPED, 2001, pp. 237–242.

[6]. Lin, K. and Wu, C., “A Low–power CAM Design for LZ Data
Compression”, IEEE Transactions on Computers, Vol. 10, 2000,
pp.1139–1145.

[7] Zukowski, C., Wang, S., “Use of Selective Precharge for
Low–Power on the Match Lines of Content–Addressable
Memories”,IEEE Int’l Workshop on Memory Technology, Design
and Testing, 1997.

