
System V IPC (Semaphores and Shared Memory)
Specifying Keys

What about this key nonsense? How do we create one? Well, since the type key_t is actually just a long, you can use any
number you want. But what if you hard-code the number and some other unrelated program hardcodes the same number but wants
another queue? The solution is to use the ftok() function which generates a key from two arguments:

 key_t ftok(const char *path, int id);

Ok, this is getting weird. Basically, path just has to be a file that this process can read. The other argument, id is usually just set to
some arbitrary char, like 'A'. The ftok() function uses information about the named file (like inode number, etc.) and the id to
generate a probably-unique key for your ipc. Programs that want to use the same queue must generate the same key, so they must
pass the same parameters to ftok().

Finally, it's time to make the call:

 key = ftok("/home/ergin/somefile", 'b');
 ipc_id = msgget(key, 0666 | IPC_CREAT);

In the above example, I set the permissions on the queue to 666 (or rw-rw-rw-, if that makes more sense to you). And now we
have msqid which will be used to send and receive messages from the queue.

Semaphores
Remember file locking? Well, semaphores can be thought of as really generic advisory locking mechanisms. You can use them to
control access to files, shared memory, and, well, just about anything you want. The basic functionality of a semaphore is that you
can either set it, check it, or wait until it clears then set it ("test-n-set"). No matter how complex the stuff that follows gets,
remember those three operations.

This document will provide an overview of semaphore functionality, and will end with a program that uses semaphores to control
access to a file. (This task, admittedly, could easily be handled with file locking, but it makes a good example since it's easier to
wrap your head around than, say, shared memory.)

Grabbing some semaphores

With System V IPC, you don't grab single semaphores; you grab sets of semaphores. You can, of course, grab a semaphore set that
only has one semaphore in it, but the point is you can have a whole slew of semaphores just by creating a single semaphore set.

How do you create the semaphore set? It's done with a call to semget(), which returns the semaphore id (hereafter referred to as
the semid):

 #include <sys/sem.h>

 int semget(key_t key, int nsems, int semflg);

What's the key? It's a unique identifier that is used by different processes to identify this semaphore set. (This key will be
generated using ftok(), described in the Message Queues document.)

The next argument, nsems, is (you guessed it!) the number of semaphores in this semaphore set. The exact number is system
dependent, but it's probably between 500 and 2000. If you're needing more (greedy wretch!), just get another semaphore set.

Finally, there's the semflg argument. This tells semget() what the permissions should be on the new semaphore set, whether
you're creating a new set or just want to connect to an existing one, and other things that you can look up. For creating a new set,
you can bit-wise or the access permissions with IPC_CREAT.

Here's an example call that generates the key with ftok() and creates a 10 semaphore set, with 666 (rw-rw-rw-) permissions:

http://www.ecst.csuchico.edu/~beej/guide/ipc/flock.html
http://www.ecst.csuchico.edu/~beej/guide/ipc/shmem.html
http://www.ecst.csuchico.edu/~beej/guide/ipc/mq.html

 #include <sys/ipc.h>
 #include <sys/sem.h>

 key_t key;
 int semid;

 key = ftok("/home/beej/somefile", 'E');
 semid = semget(key, 10, 0666 | IPC_CREAT);

Congrats! You've created a new semaphore set! After running the program you can check it out with the ipcs command. (Don't
forget to remove it when you're done with it with ipcrm!)

semop(): Atomic power!

All operations that set, get, or test-n-set a semaphore use the semop() system call. This system call is general purpose, and its
functionality is dictated by a structure that is passed to it, struct sembuf:
 struct sembuf {
 ushort sem_num;
 short sem_op;
 short sem_flg;
 };

Of course, sem_num is the number of the semaphore in the set that you want to manipulate. Then, sem_op is what you want to do
with that semaphore. This takes on different meanings, depending on whether sem_op is positive, negative, or zero, as shown in
the following table:

sem_op What happens

Positive The value of sem_op is added to the semaphore's value. This is how a program uses a semaphore to mark a resource as
allocated.

Negative
If the absolute value of sem_op is greater than the value of the semaphore, the calling process will block until the value
of the semaphore reaches that of the absolute value of sem_op. Finally, the absolute value of sem_op will be subtracted
from the semaphore's value. This is how a process releases a resource guarded by the semaphore.

Zero This process will wait until the semaphore in question reaches 0.
Table 1. sem_op values and their effects.

So, basically, what you do is load up a struct sembuf with whatever values you want, then call semop(), like this:

 int semop(int semid ,struct sembuf *sops, unsigned int nsops);

The semid argument is the number obtained from the call to semget(). Next is sops, which is a pointer to the struct
sembuf that you filled with your semaphore commands. If you want, though, you can make an array of struct sembufs in
order to do a whole bunch of semaphore operations at the same time. The way semop() knows that you're doing this is the nsop
argument, which tells how many struct sembufs you're sending it. If you only have one, well, put 1 as this argument.

One field in the struct sembuf that I haven't mentioned is the sem_flg field which allows the program to specify flags the
further modify the effects of the semop() call.

One of these flags is IPC_NOWAIT which, as the name suggests, causes the call to semop() to return with error EAGAIN if it
encounters a situation where it would normally block. This is good for situations where you might want to "poll" to see if you can
allocate a resource.

Another very useful flag is the SEM_UNDO flag. This causes semop() to record, in a way, the change made to the semaphore.
When the program exits, the kernel will automatically undo all changes that were marked with the SEM_UNDO flag. Of course, your
program should do its best to deallocate any resources it marks using the semaphore, but sometimes this isn't possible when your
program gets a SIGKILL or some other awful crash happens.

Destroying a semaphore

There are two ways to get rid of a semaphore: one is to use the Unix command ipcrm. The other is through a call to semctl()
with the proper arguments.

Now, I'm trying to compile this code under both Linux and HPUX, but I've found the the system calls differ. Linux passes a union
semun to semctl(), but HPUX just uses a variable argument list in its place. I'll try to keep code clear for both, but I'll favor the
Linux-style, since it is what is described in Steven's Unix Network Programming book.

Here is the Linux-style union semun, along with the semctl() call that will destroy the semaphore:

 union semun {
 int val; /* used for SETVAL only */
 struct semid_ds *buf; /* for IPC_STAT and IPC_SET */
 ushort *array; /* used for GETALL and SETALL */
 };

 int semctl(int semid, int semnum, int cmd, union semun arg);

Notice that union semun just provides a way to pass either an int, a struct semid_ds, or a pointer to a ushort. It is this
flexibility that the HPUX version of semctl() achieves with a variable argument list:

 int semctl(int semid, int semnum, int cmd, ... /*arg*/);

In HPUX, instead of passing in a union semun, you just pass whatever value it asks for (int or otherwise). Check the man page
for more information about your specific system. However, the code from here on out is Linux-style.

Where were we? Oh yeah--destroying a semaphore. Basically, you want to set semid to the semaphore ID you want to axe. The
cmd should be set to IPC_RMID, which tells semctl() to remove this semaphore set. The two parameters semnum and arg
have no meaning in the IPC_RMID context and can be set to anything.

Here's an example call to torch a semaphore set:

 union semun dummy;
 int semid;
 .
 .
 semid = semget(...);
 .
 .
 semctl(semid, 0, IPC_RMID, dummy);

Easy peasy.

Caveat

When you first create some semaphores, they're all initialized to zero. This is bad, since that means they're all marked as allocated; it
takes another call (either to semop() or semctl() to mark them as free. What does this mean? Well, it means that creation of a
semaphore is not atomic (in other words, a one-step process). If two processes are trying to create, initialize, and use a semaphore at
the same time, a race condition might develop.

I get around this problem in the sample code by having a single process that creates and initializes the semaphore. The main process
just accesses it, but never creates or destroys it.

Just be on the lookout. Stevens refers to this as the semaphore's "fatal flaw".

Sample programs

There are three of them, all of which will compile under Linux (and HPUX with modification). The first, seminit.c, creates and
initializes the semaphore. The second, semdemo.c, performs some pretend file locking using the semaphore, in a demo very much
like that in the File Locking document. Finally, semrm.c is used to destroy the semaphore (again, ipcrm could be used to
accomplish this.)

http://www.ecst.csuchico.edu/~beej/guide/ipc/flock.html

The idea is to run seminit.c to create the semaphore. Try using ipcs from the command line to verify that it exists. Them run
semdemo.c in a couple of windows and see how they interact. Finally, use semrm.c to remove the semaphore. You could also
try removing the semaphore while running semdemo.c just to see what kinds of errors are generated.

Here's seminit.c (run this first!):

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {
 key_t key;
 int semid;
 union semun arg;

 if ((key = ftok("semdemo.c", 'J')) == -1) {
 perror("ftok");
 exit(1);
 }

 /* create a semaphore set with 1 semaphore: */
 if ((semid = semget(key, 1, 0666 | IPC_CREAT)) == -1) {
 perror("semget");
 exit(1);
 }

 /* initialize semaphore #0 to 1: */
 arg.val = 1;
 if (semctl(semid, 0, SETVAL, arg) == -1) {
 perror("semctl");
 exit(1);
 }

 return 0;
 }

Here's semdemo.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {
 key_t key;
 int semid;
 struct sembuf sb = {0, -1, 0}; /* set to allocate resource */

 if ((key = ftok("semdemo.c", 'J')) == -1) {
 perror("ftok");
 exit(1);
 }

 /* grab the semaphore set created by seminit.c: */
 if ((semid = semget(key, 1, 0)) == -1) {
 perror("semget");
 exit(1);
 }

http://www.ecst.csuchico.edu/~beej/guide/ipc/seminit.c
http://www.ecst.csuchico.edu/~beej/guide/ipc/semdemo.c

 printf("Press return to lock: ");
 getchar();
 printf("Trying to lock...\n");

 if (semop(semid, &sb, 1) == -1) {
 perror("semop");
 exit(1);
 }

 printf("Locked.\n");
 printf("Press return to unlock: ");
 getchar();

 sb.sem_op = 1; /* free resource */
 if (semop(semid, &sb, 1) == -1) {
 perror("semop");
 exit(1);
 }

 printf("Unlocked\n");

 return 0;
 }

Here's semrm.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {
 key_t key;
 int semid;
 union semun arg;

 if ((key = ftok("semdemo.c", 'J')) == -1) {
 perror("ftok");
 exit(1);
 }

 /* grab the semaphore set created by seminit.c: */
 if ((semid = semget(key, 1, 0)) == -1) {
 perror("semget");
 exit(1);
 }

 /* remove it: */
 if (semctl(semid, 0, IPC_RMID, arg) == -1) {
 perror("semctl");
 exit(1);
 }

 return 0;
 }

Isn't that fun! I'm sure you'll give up Quake just to play with this semaphore stuff all day long!

Shared Memory

http://www.ecst.csuchico.edu/~beej/guide/ipc/semrm.c

The cool thing about shared memory segments is that they are what they sound like: a segment of memory that is shared between
processes. I mean, think of the potential of this! You could allocate a block a player information for a multi-player game and have
each process access it at will! Fun, fun, fun.

There are, as usual, more gotchas to watch out for, but it's all pretty easy in the long run. See, you just connect to the shared memory
segment, and get a pointer to the memory. You can read and write to this pointer and all changes you make will be visible to
everyone else connected to the segment. There is nothing simpler. Well, there is, actually, but I was just trying to make you more
comfortable.

Creating the segment and connecting

Similarly to other forms of System V IPC, a shared memory segment is created and connected to via the shmget() call:
 int shmget(key_t key, size_t size, int shmflg);

Upon successful completion, shmget() returns an identifier for the shared memory segment. The key argument should be created
the same was as shown in the Message Queues document, using ftok(). The next argument, size, is the size in bytes of the
shared memory segment. Finally, the shmflg should be set to the permissions of the segment bitwise-ORd with IPC_CREAT if
you want to create the segment, but can be 0 otherwise. (It doesn't hurt to specify IPC_CREAT every time--it will simply connect
you if the segment already exists.)

Here's an example call that creates a 1K segment with 644 permissions (rw-r--r--):

 key_t key;
 int shmid;

 key = ftok("/home/beej/somefile3", 'R');
 shmid = shmget(key, 1024, 0644 | IPC_CREAT);

But how do you get a pointer to that data from the shmid handle? The answer is in the call shmat(), in the following section.

Attach me--getting a pointer to the segment

Before you can use a shared memory segment, you have to attach yourself to it using the shmat() call:
 void *shmat(int shmid, void *shmaddr, int shmflg);

What does it all mean? Well, shmid is the shared memory ID you got from the call to shmget(). Next is shmaddr, which you
can use to tell shmat() which specific address to use but you should just set it to 0 and let the OS choose the address for you.
Finally, the shmflg can be set to SHM_RDONLY if you only want to read from it, 0 otherwise.

Here's a more complete example of how to get a pointer to a shared memory segment:

 key_t key;
 int shmid;
 char *data;

 key = ftok("/home/beej/somefile3", 'R');
 shmid = shmget(key, 1024, 0644 | IPC_CREAT);
 data = shmat(shmid, (void *)0, 0);

And bammo! You have the pointer to the shared memory segment! Notice that shmat() returns a void pointer, and we're treating
it, in this case, as a char pointer. You can treat is as anything you like, depending on what kind of data you have in there. Pointers
to arrays of structures are just as acceptable as anything else.

Also, it's interesting to note that shmat() returns -1 on failure. But how do you get -1 in a void pointer? Just do a cast during
the comparison to check for errors:

 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(-1))
 perror("shmat");

All you have to do now is change the data it points to normal pointer-style. There are some samples in the next section.

http://www.ecst.csuchico.edu/~beej/guide/ipc/mq.html

Reading and Writing

Lets say you have the data pointer from the above example. It is a char pointer, so we'll be reading and writing chars from it.
Furthermore, for the sake of simplicity, lets say the 1K shared memory segment contains a null-terminated string.

It couldn't be easier. Since it's just a string in there, we can print it like this:

 printf("shared contents: %s\n", data);

And we could store something in it as easily as this:

 printf("Enter a string: ");
 gets(data);

Of course, like I said earlier, you can have other data in there besides just chars. I'm just using them as an example. I'll just make
the assumption that you're familiar enough with pointers in C that you'll be able to deal with whatever kind of data you stick in
there.

Detaching from and deleting segments

When you're done with the shared memory segment, your program should detach itself from it using the shmdt() call:
 int shmdt(void *shmaddr);

The only argument, shmaddr, is the address you got from shmat(). The function returns -1 on error, 0 on success.

When you detach from the segment, it isn't destroyed. Nor is it removed when everyone detaches from it. You have to specifically
destroy it using a call to shmctl(), similar to the control calls for the other System V IPC functions:

 shmctl(shmid, IPC_RMID, NULL);

The above call deletes the shared memory segment, assuming no one else is attached to it. The shmctl() function does a lot more
than this, though, and it worth looking into. (On your own, of course, since this is only an overview!)

As always, you can destroy the shared memory segment from the command line using the ipcrm Unix command. Also, be sure
that you don't leave any usused shared memory segments sitting around wasting system resources. All the System V IPC objects
you own can be viewed using the ipcs command.

Concurrency

What are concurrency issues? Well, since you have multiple processes modifying the shared memory segment, it is possible that
certain errors could crop up when updates to the segment occur simultaneously. This concurrent access is almost always a problem
when you have multiple writers to a shared object.

The way to get around this is to use Semaphores to lock the shared memory segment while a process is writing to it. (Sometimes the
lock will encompass both a read an write to the shared memory, depending on what you're doing.)

A true discussion of concurrency is beyond the scope of this paper, and you might want to check out one of many books on the
subject. I'll just leave it with this: if you start getting weird inconsistencies in your shared data when you connect two or more
processes to it, you could very well have a concurrency problem.

Sample code

Now that I've primed you on all the dangers of concurrent access to a shared memory segment without using semaphores, I'll show
you a demo that does just that. Since this isn't a mission-critical application, and it's unlikely that you'll be accessing the shared data
at the same time as any other process, I'll just leave the semaphores out for the sake of simplicity.

This program does one of two things: if you run it with no command line parameters, it prints the contents of the shared memory
segment. If you give it one command line parameter, it stores that parameter in the shared memory segment.

http://www.ecst.csuchico.edu/~beej/guide/ipc/semaphores.html

Here's the code for shmdemo.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 #define SHM_SIZE 1024 /* make it a 1K shared memory segment */

 int main(int argc, char *argv[])
 {
 key_t key;
 int shmid;
 char *data;
 int mode;

 if (argc > 2) {
 fprintf(stderr, "usage: shmdemo [data_to_write]\n");
 exit(1);
 }

 /* make the key: */
 if ((key = ftok("shmdemo.c", 'R')) == -1) {
 perror("ftok");
 exit(1);
 }

 /* connect to (and possibly create) the segment: */
 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {
 perror("shmget");
 exit(1);
 }

 /* attach to the segment to get a pointer to it: */
 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(-1)) {
 perror("shmat");
 exit(1);
 }

 /* read or modify the segment, based on the command line: */
 if (argc == 2) {
 printf("writing to segment: \"%s\"\n", argv[1]);
 strncpy(data, argv[1], SHM_SIZE);
 } else
 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */
 if (shmdt(data) == -1) {
 perror("shmdt");
 exit(1);
 }

 return 0;
 }

More commonly, a process will attach to the segment and run for a bit while other programs are changing and reading the shared
segment. It's neat to watch one process update the segment and see the changes appear to other processes. Again, for simplicity, the
sample code doesn't do that, but you can see how the data is shared between independent processes.

Also, there's no code in here for removing the segment--be sure to do that when you're done messing with it.

http://www.ecst.csuchico.edu/~beej/guide/ipc/shmdemo.c

	System V IPC (Semaphores and Shared Memory)
	Specifying Keys
	Semaphores
	Grabbing some semaphores
	semop(): Atomic power!
	Destroying a semaphore
	Caveat
	Sample programs

	Shared Memory
	Creating the segment and connecting
	Attach me--getting a pointer to the segment
	Reading and Writing
	Detaching from and deleting segments
	Concurrency
	Sample code

